
dVRL: Reinforcement Learning Environments for Surgical Robotics
Florian Richter1 Student Member, IEEE, Ryan K. Orosco2 Member, IEEE,

and Michael C. Yip1 Member, IEEE

Abstract— Reinforcement Learning (RL) is a framework that
recently has found success by integrating Artificial Intelli-
gence to solve a variety of complex problems. We aim to
bring the successes from the RL community to the surgical
robotics community by presenting the first open-sourced RL
environemnts for surgical robotics, dVRL3. By engaging the
broader community, which includes both surgical robotics and
non-domain experts such as reinforcement learning enthusiasts,
new solutions can be contributed to problems that would have
real world significance to robotic surgery and the patients that
undergo those procedures. To show the effectiveness of the
simulated environments, learned policies are transferred to the
real robot and sucessfully accomplish surgically relevant tasks.

I. INTRODUCTION

Reinforcement Learning (RL) is a framework that inte-
grates Artificial Intelligence to solve variety of complex
problems [1]. The framework is based on a Markov Decision
Process where a control policy is learned through interaction
with the environment and maximizes the long term reward,
which is specified appropriately to solve the problem. This
allows for model-free controllers to be found that can solve
challenging, non-linear problems. Alongside the ongoing
evolution and successes of RL, there is active research in
automating surgical tasks [2]. One of the challenges moving
forward for the surgical robotics community is that a lot of
the recent work is based on hand-crafted control policies that
can be difficult to both develop at scale and generalize well.

We aim to bridge these two communities by presenting
dVRL, the first open-sourced RL environments for Surgical
Robotics. We are motivated to engage the broader com-
munity that includes surgical robotics and also non-domain
experts, such that reinforcement learning enthusiasts with
no domain knowledge of surgery can still easily prototype
their algorithms with such an environment and contribute to
solutions that would have real world significance to robotic
surgery and the patients that undergo those procedures. To
evaluate performance of the presented environments, learned
policies are transferred to the real robot with minimal effort
to automate a surgically relevant task.

II. METHODS

The environments are simulated in V-REP based on the
da Vinci R© Surgical System System scenes developed by
Fontanelli et al. [3]. The presented environments only incor-
porate a single Patient Side Manipulator (PSM), as shown
in Fig. 1, but the additional PSM and endoscopic camera
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Fig. 1: Simulation scene in V-REP of the single PSM arm. This is the
fundamental scene that the presented environments, PSM Reach and PSM
Pick, are based on.

arm can be easily added. The PSM arm is controlled in
the end-effector space and, for the sake of simplicity, the
orientation is held constant. By working in the end-effector
space, the learned policies can be transferred to various
EndoWrists which are the attachable surgical tools for the da
Vinci R© Surgical System and have varied kinematic chains.
For the simulated scene in the environments presented, the
Large Needle Driver (LND) EndoWrist is used, but it can be
replaced with other EndoWrist models.

A. PSM Reach Environment
The goal of the PSM Reach Environment is to have the

end-effector reach a target goal position g starting from
any initial configuration, p0. Note that both g and p0 are
3-dimensional vectors describing end-effector position and
when resetting the environment are randomly sampled from
the workspace of the PSM arm. The state and action space
of the environment is:

st =
[
pt g

]
at =

[
∆t

]
(1)

where ∆t is the control input that changes the end-effector
position, which is bounded by [-1, 1]. The next state equation
for the position is:

pt+1 = η∆t + pt (2)

where η is a scaling factor. The term η must be kept low
enough to ensure stability on the real da Vinci R© Surgical
System. This is since every new action gives new set points
to the joint level controllers. If the new set points are far from
the current position, overshoot and instability can occur. The
reward function is:

r(st) = −1||pt−g||>δ (3)

where 1 is the indicator function and δ is a threshold
distance.
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B. PSM Pick Environment

The goal of the PSM Pick Environment is to bring an
object, with 3D position ot, to a goal position g. In this case,
the object is a small simulated cylinder. The PSM grippers
jaw angle, jt, is also activated and bounded from 0 to 1,
similar to LND on the real da Vinci R© Surgical System.
When resetting the environment, g is randomly sampled from
the workspace, p0 is set to be above the object, and o0 is
set to a constant position on the table shown in Fig. 1. The
state and action space of the environment is:

st =
[
pt jt ot g

]
at =

[
∆t jt+1

]
(4)

where pt is defined as previously stated and the action sets
both a change in position and the jaw angle directly. The
reward function for the environment is:

r(st) = −1||ot−g||>δ (5)

where δ is once again the threshold distance.

III. EXPERIMENTS

Both PSM Reach and Pick environments have δ set to
3mm and η set to 1mm. This value for η was found to be
the highest value where no overshoot was observed through
experimentation on the da Vinci Research Kit (dVRK) [4].
The environments were trained using Deep Deterministic
Policy Gradient with Hindsight Experience Replay (DDPG
+ HER) [5]. Due to sparsity of the PSM Pick environment,
the loss function for the actor in DDPG is augmented with
a behavioral cloning loss from demonstrations [6].

The learned policies were transferred to the real da Vinci R©
Surgical System using dVRK [4]. The surgical task the
policies are tested on is to use the suction and irrigation En-
doWrist tool to remove fake blood from a simulated abdomen
to reveal shrapnel. Then the shrapnel must be removed using
the other PSM with the LND EndoWrist. The suction and
irrigation tool uses the learned PSM Reach Policy, and the
LND tool uses a composition of the learned PSM Reach
and PSM Pick policies. The positional information and jaw
angles are measured and set utilizing the encoder readings,

forward and inverse kinematics, and joint level controllers
implemented in dVRK [4]. The goals are preset by manually
moving the arms to the goal locations and recording the
positional information.

IV. RESULTS

The PSM Reach environment successfully trained a
learned policy using DDPG + HER where the goal is
reached within δ distance 100% of the time. The PSM Pick
environment did not successfully train a learned policy within
30000 training episodes using only DDPG + HER, but with
the behavioral cloning, a learned policy successfully brought
the object within δ distance 100% of the time. Fig. 2 shows
the learned policy transfer experiment and the completion
of the surgical task. Both the PSM Reach and Pick policies
reach the goal within δ distance 100% of the time.

V. DISCUSSION AND CONCLUSION

In this work, we present the first, open-sourced rein-
forcement learning environment for surgical robotics called
dVRL. The learned policies effectively transferred to the real
world and solved surgically relevant tasks. We see dVRL
as enabling the broad surgical robotics community to fully
leverage the newest strategies in reinforcement learning, and
for reinforcement learning scientists with no previous domain
knowledge of surgical robotics to be able to test and develop
new algorithms that can have real-world, positive impact to
patient care and the future of autonomous surgery.
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Fig. 2: The suction tool using a learned PSM Reach policy to remove fake blood to reveal debris. After the debris is revealed, the Large Needle Driver
utilized a composition of learned PSM Reach and PSM Pick policies to remove the debris and hand it to the first assistant.
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